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Abstract. ‘Model free’ rule discovery from data has recently been sub-
ject to considerable criticism, which has cast a shadow over the emerging
discipline of time series data mining. However, other than in data mining,
rule discovery has long been the subject of research in statistical physics
of complex phenomena. Drawing from the expertise acquired therein, we
suggest explanations for the two mechanisms of the apparent ‘meaning-
lessness’ of rule recovery in the reference data mining approach.

One reflects the universal property of self-affinity of signals from real life
complex phenomena. It further expands on the issue of scaling invariance
and fractal geometry, explaining that for ideal scale invariant (fractal)
signals, rule discovery requires more than just comparing two parts of
the signal. Authentic rule discovery is likely to look for the possible
‘structure’ pertinent to the failure mechanism of the (position and/or
resolution-wise) invariance of the time series analysed.

The other reflects the redundancy of the ‘trivial’ matches, which effec-
tively smoothes out the rule which potentially could be discovered. Or-
thogonal scale space representations and appropriate redundancy sup-
pression measures over autocorrelation operations performed during the
matches are suggested as the methods of choice for rule discovery.

1 Introduction

Recently, there has been considerable criticism of the mainstream rule discovery
algorithm in data mining [1]. By performing scrutiny testing [1] suggests that the
discussed algorithm [2] based rule discovery does not produce meaningful rules.
In particular, the confidence of the rules recovered is not to be distinguished
from the rules obtained from random noise. The overwhelming conclusions of the
article would be disastrous for the domain of research in question if they lacked
full explanation and understanding. In addition to the explanation provided
in [1], the purpose of our paper is to propose a different look at the possible and
plausible causes for the result reported in [1].

The primary investigated example in [1], coinciding with the example used
by the primarily criticised paper by Das et al [2], is that of the S&P500 financial
index. Indeed, the authors of [1] suggest that there is no more confidence in the
particular rule advocated in [2] than in any other deterministic rule. Thus any



rule might do, which in actual fact means that such a rule is useless and irrel-
evant, holding at random, statistically meaningless instances. The mechanism
of proving this conclusion has been devised by comparing the rule discovery al-
gorithm from [2] on both the test time series (S&P500) and the surrogate time
series (random walk). However, as the authors of [1] rightly indicate, the evidence
for the lack of correlations in a financial time series like the S&P 500 index is
so overwhelming that the ‘meaninglessness’ of any deterministic rule discovered
may not seem surprising [3,4,5,6,7,8].

The article [1] suggests, however, that the same degree of meaninglessness is
obtained no matter what input time series is used. The primary cause attributed
to this failure is not in the clustering algorithm, which is the only rule extraction
mechanism investigated, but in the pre-processing of the time series. In particu-
lar, the ‘moving window’ overlapping selection of candidate time series intervals
leads to so-called spurious matches, destroying the resolution of the clustering
algorithm.

The purpose of this writing is to look closer at the likely cause for the inability
of the algorithms discussed blindly to extract rules from real life time series. In
particular, the issue of scale invariance will be addressed, which characterises
not only an overwhelming range of real-life and artificial time series but can also
be attributed to isolated singularities - often the building blocks of the real-life
and artificial time series.

Additionally, scaling invariance will be linked to the rate of auto-correlation
decay, which determines the impact of ‘redundant’ spurious matches on the blind
clustering algorithms. While auto-correlation decay is considered an important
diagnostic tool in the study of long range dependence, for the purpose of blind
clustering only the extrema (maxima or minima) of the autocorrelation (or the
local match) may need to be considered to provide rule extraction with sufficient
resolution and sensitivity.

2 Redundant information — spurious matches

The primary cause of the meaninglessness of the rule discovery has been at-
tributed by the authors of the critical work [1] to the shortcoming of the time
series pre-processing algorithm and in particular to the redundancy of the match-
ing operation through the so-called ‘trivial’ matches. Indeed, matching two time-
series intervals shifted with respect to one another by a time lag will indeed in
many cases show a slow rate of decorrelation - which is reffered to as partial,
trivial matches in [1].

Apart from the entire plethora of possible distance measures, the standard
way of calculating the inner product of two time series is used for evaluating
their ‘correlation’ level. For the time lag ¢ shifted versions, the definition of the
autocorrelation product/function C(t) of a function f(t) reads:
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where f(7) is the complex conjugate of f(t). Amazingly, the autocorrelation is
simply given by the Fourier transform F of the absolute square of f(t):

o) =F(fOP), (2)

and, of course, the Fourier transform of the second moment of the function is
nothing else than its power spectrum P(w) = F(|f(¢)|?). This relationship is
known by the name of the Wiener Khinchin theorem.

Thus, interestingly, the Fourier power spectrum is also related to the likely
cause of the inability of the rule discovery to be selective enough in its pre-
processing phase (feeding the rule extraction algorithms.) The importance of
this in the context of our discussion lies in the fact that it links the scaling prop-
erties of the Fourier power spectrum with the decay rate of the auto-correlation
function. Thus any property of the scaling invariance as discussed above will
reveal itself in the invariance of the auto-correlation function. In particular, it
will also determine the rate of decay of the auto-correlation function and will be
inherited by the cross-correlation products of the time series with its sub-parts.
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Fig. 1. Left: the plot of the variability of human heartbeat from a seven day long
experiment where the test persons were given placebo or beta-blocker. For the vari-
ability estimate, local roughness (local correlation) exponent h is used, smoothed with
a moving average (MA) filter with 100 and 1000 long window. An interesting pattern
of response to food is evident [9]. Right: autocorrelation function confirms the pres-
ence of an invariant, intra-day periodic structure. The autocorrelation plot is in fact
the autocorrelation of the local correlation exponent (as described with the Hélder h
exponent.)

The sub-part matching operation is the key operation used in the rule dis-
covery algorithms [2,1] and it clearly inherits the self-similarity properties of the
time series. The explanation of the ‘trivial match’ redundancy which contributes
to the inability of the algorithm to select sound rules thus comes from the spec-
tral properties of the time series. The same spectral properties which, as we will
show in the following, describe self-similarity properties of the time series.



It is worth noting that the autocorrelation decay is an important diagnos-
tic tool widely used in investigating long range dependence (correlations), see
e.g. [4] in the context of S&P500 analysis. However, due to the (Wiener Khinchin)
equivalence referred to above, power spectrum decay has been extensively inves-
tigated in the same context. A modern method which allows local multiscale
or multi-resolution decomposition of non-stationary signals as opposed to the
global Fourier approach (useful for stationary processes), is the recently intro-
duced wavelet transform. It allows local location-wise (temporal) and scale-wise
(frequency) extraction of required information, including moments of the decom-
position measure and regularity (scaling) exponents.

3 Estimating regularity properties of rough time series

The advent of multi-scale techniques (like WT), capable of locally assessing the
singular behaviour, greatly contributed to the advance of analysis of ‘strange’
signals, including (multi)fractal functions and distributions. The wavelet trans-
form [10,11,12,13] is a decomposition of the input time series into the discrete
or continuous basis of localised (often compactly supported) functions - the
wavelets. This decomposition is defined through an inner product of the time
series with the appropriately rescaled and translated wavelet of a fixed shape.
Wavelet decomposition schemes exist which allow decomposition optimisation
through the choice from various wavelet bases [14,15] or adaptive decomposi-
tion (notably the lifting scheme [16]).

In the continuous formulation, the wavelet transform can be seen as a convo-
lution product of the signal with the scaled and translated kernel, the wavelet ¢(z):
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where s,b € R and s > 0 for the continuous version.

For analysis purposes, one is not so much concerned with numerical or trans-
mission efficiency or representation compactness, but rather with accuracy and
adaptive properties of the analysing tool. Therefore, in analysis tasks, contin-
uous wavelet decomposition is mostly used. The space of scale s and position
b is then sampled semi-continuously, using the finest data resolution available.
The numerical cost of evaluating the continuous wavelet decomposition is not
as high as it may seem. Algorithms have been proposed which (per scale) have
a complexity of the order n, the number of input samples, at a relatively low
constant cost factor [17]. Additionally, computationally cheap, discretised, semi-
continuous versions of the decomposition are possible [18,19].

In figure 2, we plot the input time series which is a part of the S&P index
containing the crash of ’87. In the same figure, we plot corresponding maxima
derived from the WT decomposition with the Mexican hat wavelet. The maxima
converging to the strongest singularity - the '97 crash have been highlighted in
the top view.
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Fig. 2. Left: the L1 normalised S&P500 index time series with the derived WT maxima
tree above it in the same figure. The strongest maxima correspond to the crash of ’87.
Right: the second moment of the partition function over the entire CWT (thus not
only the maxima lines) see Eq. 4, shows consistent scaling invariance with the exponent
H +1 = 1.5. This corresponds with the Brownian walk scaling invariance exponent at

H =0.5.

There is an ultimate link between the global scaling exponent: the Hurst
exponent H (compare figure 3), and the Fourier power spectral exponent. The
power spectrum of the input signal and the corresponding scaling exponent -~y
can be directly evaluated from the second moment of the partition function
Z(s,q=2):

Z(s,q) = Y (W fwils))" (4)
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where 2(s) = {w;(s)} is the set of maxima w;(s) at the scale s of the continuous
wavelet transform W f(s,t) of the function f(%).

Indeed the wavelet transform decomposes the signal into scale (and thus fre-
quency) ! dependent components (scale and position localised wavelets), compa-
rably to frequency localised sines and cosines based Fourier decomposition, but
with added position localisation. Scaling of the second moment of the decompo-
sition coefficients provides v, the power spectrum scaling, through v = 2H + 1,
the relation which links the spectral exponent v with the Hurst exponent H.

4 Rules within rules, or the principle of self-similarity

Contrary to the long and widely accepted (Euclidean) view, real world time
series/ signals are not smooth, but they are often non-differentiable and densely
packed with singularities. Rough and wildly changing records are ever-present in

! The working scale of the wavelet s is inversely proportional to the (Fourier) frequency
f ~ 1/s and the continuous wavelet used is the second derivative of the Gaussian
curve (Mezican hat).



nature [24,25,26,27,28]. The frequently adopted view that these signals consist
of some smooth information carrying a component with superimposed noise is
also very often inaccurate. Real life records are not necessarily contaminated by
‘noise’. Instead, in the case of the lack of a better model, they often intrinsically
consist exclusively of noise - indeed, they are ‘noise’ themselves.
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Fig. 3. The principle of self-affinity; similar rescaling in the bottom left figure versus
affine rescaling, bottom right, of the fractional Brownian motion of H = 0.3. The
rescaling factor used for the affine rescaling of the (z,%) axis is (a,a®?), while for a
similar case both axes were rescaled using the a factor.

Their ‘noisy’ components are often distributed at various resolution and
length scales - in other words each sub-part of the record is equally noisy and
statistically similar (after affine rescaling of z,y coordinates with some factors
Bz,By) to the entire record (or any other subpart). This kind of similarity can
often be characterised by one single exponent h = log(3,)/log(f;) for a range of
B rescaling factors. This is the concept of local scaling which has been explored
with the wavelet transform local scaling estimates in section 3. Additionally, the
local scaling is often isotropic and the same one unique exponent can charac-
terise both global and local ratio of the similarity rescaling. E.g. this is the case
for 1-dim Brownian walk - the integral of white noise for which A = 0.5, and
equals global H = 0.5, the so-called Hurst exponent. Such global scaling rules
have been addressed through the partition function multifractal formalism [21].

Indeed the very essence of scaling, i.e. scale invariance, has the consequence
that statistically similar patterns may occur at any resolution or scale length.
This property characterising many real life signals may be behind the limited
ability to extract meaningful deterministic ‘rules’ from such records [1], although
it does permit statistical rule discovery [4,22]. Such can be used for distance
evaluation for detecting rule violation for whole time series or streaming diagnosis
etc., or streaming time series novelty assessment through departure from the
model ‘rule’.

In conclusion, the kind of redundancy inherent to a variety of signals analysed
in [1] (for the discussion of the algorithm of [2]), as revealed in the ‘trivial or



spurious matches’ has been the subject of research into scaling, (multi-)fractal
and long-range correlation properties in real-life phenomena and technology.
Recently this has also been done using the advanced multiscale technique of
wavelet transform permitting advanced ‘inverse problem’ type rule recovery.

The pressing question of course remains, what then is the meaningful method-
ology/strategy for dealing with signals inherently tough for rule discovery. The
answer resides, in our opinion as outlined, in the spectral and auto-correlation
properties of the time series. The rules which can be detected are instances of
invariance violation, This can be manifested in the non-stationarity of spectral
characteristics, be it a short-time power spectrum or multifractal spectrum. Or
alternatively and simultaneously, in the breakdown of the scaling invariance -
the structure which potentially emerges from the tree of the wavelet transform
maxima [23,29,30,31,32], or possibly the structure emerging from the conduct
of the self-adapting mechanism in multiscale/multiresolution decomposition or
approximation bases [14,15,16,33].

References

1. J. Lin, E. Keogh, W. Truppel, When is Time Series Clustering Meaningful?, preprint
Workshop on Clustering High Dimensional Data and its Applications, SDM 2003.
will appear on the workshop site: www.cs.utexas.edu/users/inderjit/sdm03.html

2. G. Das, K. Lin, H. Mannila, G. Renganathan, P. Smyth, Rule Discovery from Time
Series, in proceedings of the ..th Intl. Conference on Knowledge Discovery and Data
Mining, New York, NY,Aug 27-31, 1998, pp 16-22, (1998).

3. R.N. Mantegna and H.E. Stanley, An Introduction to Econophysics: Correlations
and Complezity in Finance Cambridge, England: Cambridge University Press,
(2000).

4. A. Arneodo, J.F. Muzy, D. Sornette, Eur. Phys J. B, 2, 277 (1998). \\http://xxx.
lanl.gov/ps/cond-mat/9708012

5. A. Johansen, D. Sornette, Stock Market Crashes are Outliers, Eur.Phys.J. B 1, pp.
141-143 (1998).

A. Johansen, D. Sornette, Large Stock Market Price Drawdowns Are Outliers
arXiv:cond-mat/0010050, 3 Oct 2000, rev. 25 Jul 2001.

6. B. Podobnik, P.Ch. Ivanov, Y. Lee, and H.E. Stanley. “Scale-invariant Truncated
Lévy Process”. Europhysics Letters, 52 pp 491-497, (2000).

7. Z. R. Struzik. Wavelet Methods in (Financial) Time-series Processing. Physica A:
Statistical Mechanics and its Applications, 296(1-2):307-319, June 2001.

8. D. Sornette, Y. Malevergne, J.F. Muzy, Volatility Fingerprints of Large Shocks:
Endogeneous Versus Exogeneous, arXiv:cond-mat/0204626, (2002).

9. Z. R. Struzik. Revealing Local Variablity Properties of Human Heartbeat Intervals
with the Local Effective Holder Exponent. Fractals 9, No 1, 77-93 (2001).

10. S. Jaffard, Multifractal Formalism for Functions: I. Results Valid for all Functions,
I1. Self-Similar Functions, STAM J. Math. Anal., 28(4): 944-998, (1997).

11. I. Daubechies, Ten Lectures on Wavelets, (S.I.A.M., 1992).

12. M. Holschneider, Wavelets - An Analysis Tool, (Oxford Science Publications, 1995).

13. S.G. Mallat and W.L. Hwang, Singularity Detection and Processing with Wavelets.
IEEE Trans. on Information Theory 38, 617 (1992).

S.G. Mallat and S. Zhong Complete Signal Representation with Multiscale Edges.
IEEE Trans. PAMI 14, 710 (1992).



14. S. Mallat, Z. Zhang, Matching Pursuit in a Time-frequency Dictionary, IEEE
Transactions on Signal Processing, 41 pp. 3397-3415, (1993).

15. R.R. Coifmann M.V. Wickerhauser, Entropy-based Algorithm for Best-basis Se-
lection. IEEE Transactions on Information Theory, 38, pp. 713-718, (1992).

16. W. Sweldens, The Lifting Scheme: Construction of Second Generation Wavelets,
SIAM J. Math. Anal. 29, (2), pp 511-546, (1997).

17. A. Muiioz Barrutia, R. Ertlé, M. Unser, Continuous Wavelet Transform with Ar-
bitrary Scales and O(N) Complexity, Signal Processing, vol 82, no. 5, pp. 749-757,
May 2002

18. M. Unser, A. Aldroubi, S.J. Schiff, Fast Implementation of the Continuous Wavelet
Transform with Integer Scales, IEEE Transactions on Signal Processing, vol. 42, no.
12, pp. 3519-3523, December 1994.

19. Z. R. Struzik, Oversampling the Haar Wavelet Transform. Technical Report INS-
R0102, CWI, Amsterdam, The Netherlands, March 2001.

20. A. Arneodo, E. Bacry, J.F. Muzy, Oscillating Singularities in Locally Self-Similar
Functions, PRL, 74, No 24, 4823-4826, (1995).

21. A. Arneodo, E. Bacry and J.F. Muzy, The Thermodynamics of Fractals Revisited
with Wavelets. Physica A, 213, 232 (1995).

J.F. Muzy, E. Bacry and A. Arneodo, The Multifractal Formalism Revisited with
Wavelets. Int. J. of Bifurcation and Chaos 4, No 2, 245 (1994).

22. A.C.-C.Yang, S.-S. Hseu, H.-W. Yien, A.L. Goldberger, C.-K. Peng, Linguistic
Analysis of the Human Heartbeat using Frequency and Rank Order Statistics, PRL,
in press, (2003).

23. Z.R. Struzik, Taming Surprises, in proceedings of the New Trends in Intelligent
Information Processing and Web Mining conference, Zakopane June 2-5, (2003).
24. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John

Wiley, 1990; paperback 1997.

25. A. Arneodo, E. Bacry, J.F. Muzy, Wavelets and Multifractal Formalism for Singular
Signals: Application to Turbulence Data, PRL, 67, No 25, 3515-3518, (1991).

26. H.E. Stanley, P. Meakin, Multifractal Phenomena in Physics and Chemistry, Na-
ture, vol 335, 405-409, (1988)

27. P.Ch. Ivanov, M.G. Rosenblum, L.A. Nunes Amaral, Z.R. Struzik, S. Havlin, A.L.
Goldberger and H.E. Stanley, Multifractality in Human Heartbeat Dynamics, Na-
ture 399, 461-465, (1999).

28. A. Bunde, J. Kropp, H.J. Schellnhuber, (Eds), The Science of Disasters, Climate
Disruptions, Heart Attacks, and Market Crashes, Springer, (2002).

29. A. Arneodo, E. Bacry and J.F. Muzy, Solving the Inverse Fractal Problem from
Wavelet Analysis, Furophysics Letters, 25, No 7, 479-484, (1994).

30. A. Arneodo, A. Argoul, J.F. Muzy, M. Tabard and E. Bacry, Beyond Classical
Multifractal Analysis using Wavelets: Uncovering a Multiplicative Process Hidden
in the Geometrical Complexity of Diffusion Limited Aggregates. Fractals 1, 629
(1995).

31. Z.R. Struzik The Wavelet Transform in the Solution to the Inverse Fractal Problem.
Fractals 3 No.2, 329 (1995).

32. Z. R. Struzik, A. P. J. M. Siebes. Wavelet Transform in Similarity Paradigm. In
Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing, Volume 1394 of Lecture Notes in Artificial Intelligence, pp 295-309, Melbourne,
Australia, April 1998.

33. A. Smola, B.Schikopf, A Tutorial on Support Vector Regression, NeuroCOLT2
technical report NC-TR-1998-030, (1998).



